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Abstract The performance of axial displacement estimation in ultrasound elastography can be degraded by tissue lateral displace-
ments, mainly because of the move-in and move-out of tissue scatterers. In our previous work, a tissue axial stretching model was pro-
posed to separate the decorrelation effect induced by lateral displacements from other decorrelation sources. In this paper, the tissue axial
stretching model is analyzed theoretically. The theoretical result in a closed form indicates that the peak value of the cross-correlation func-
tion between the pre- and post-compression echoes is determined mainly by the beam width, the beam position and the lateral strain. Com-
puter simulations are carried out to verify the theoretical conclusion. The theoretical analysis and simulation results can help to understand
more clearly the decorrelation effect of tissue lateral displacements and the 2-D spatial comprehensive cross-correlation method presented

previously to reduce the decorrelation effect.
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Elastography, an ultrasonic technique for quanti-
tatively imaging the elastic modulus distribution in
soft tissues, is a promising method for the early de-
tection of many tissue pathologies[l~3] . The internal
tissue axial displacements resulting from a small, qua-
sistatic external compression may be estimated using a
cross-correlation analysis applied to the pre- and post-
compression echo windows. The axial strain profile
can be calculated from the gradient of the estimated
displacements.

The performance of the displacement and strain
estimation has been dl4=97,
Varghese et al. proposed a concept of strain filter as a
theoretical framework to characterize the performance
of elastography'®™®). The strain filter concept indi-
cates that the elastographic performance is limited by
decorrelation noise induced by axial strain for large
tissue strain values, and electronic noise for low strain
values.

extensively analyze

When tissue is compressed, ultrasonic scatterers
in the tissue undergo a complex motion pattern that
depends on the elastic properties and boundary condi-
tions of the tissue. In addition to axial motions, later-
al and elevational motions also introduce decorrelation
to axial displacement estimation in elastogra-
phy[8~1°]. Since the sound beam is much broader in
the elevational direction, the decorrelation effect of

tissue elevational motions is usually not taken into ac-
count. As a result, the complex 3-D problem is sim-
plified to a 2-D problem, usually a plane strain or a
plane stress problem.

To study degradation of the elastographic quality
introduced by the lateral and elevational motions of
the scatterers, the concept of the strain filter was ex-
tended by Kallel et al. (8] The effective cross-correla-
tion function that includes the contributions of lateral
and elevational decorrelation was used to estimate the
decorrelation effect by both axial strain and non-axial
displacements. Although the method of temporal
stretching can significantly reduce the decorrelation
effect induced by axial strain!'*'2), stretching the
post-compression echo also results in the stretching of
the transducer point spread function (PSF), which
also introduces decorrelation.

In our previous work, to estimate the decorrela-
tion effect induced by tissue lateral displacements on-
ly, a tissue axial stretching model was presented to
separate the coupling effects of axial strain and lateral
displacements on decorrelation**). In this model, the
post-compression tissue that undergoes a 2-D motion
is stretched back to its original size in the axial direc-
tion, but remains in its post-compression position in
the lateral direction. As a result, this axial stretching
removes the axial strain and retains the lateral dis-

* Supported by the National Natural Science Foundation of China (Grant No. 60171039)
* % To whom correspondence should be addressed. E-mail: deabj@tsinghua. edu. cn



Progress in Natural Science Vol.14 No.5 2004

431

placement. For a homogenous isotropic elastic tissue
compressed by an infinite-width compressor with a
perfect slip boundary, a scatterer in the position
(z,y) will theoretically move to the position
((1+e,)x,(1~¢,)y) after compression, where
and y are the lateral and axial direction of the trans-
ducer, the origin of the coordinate system is in the
transducer center, ¢, and e, are the lateral and axial
strain (absolute values), respectively, and 1+ ¢, and
1- ¢, represent an expansion in the lateral direction
and a compression in the axial direction, respectively.
After tissue axial stretching, the scatterer will move
to the position ((1+¢,)x, y), which means that the
coupling effect of axial strain is eliminated complete-

ly.

After separating the decorrelation effect induced
by lateral displacements, the pre- and post-compres-
sion echoes are decomposed into two different parts,
i.e. the signal part and the noise part. The signal
part attributes to tissue scatterers remaining within
the sound beam, while the noise part attributes to the
move-in and move-out of tissue scatterers''®). There-
fore, the signal-to-noise ratio {SNR) can be used to
analyze the decorrelation effect induced by lateral dis-
placements.

As illustrated in our previous work, the decorre-
lation effect induced by lateral displacements decreases
as the beam width increases, because the amount of
scatterers remaining within the beam after compres-
sion increases as the beam width increases. The
decorrelation effect induced by lateral displacements
increases as the lateral strain increases or the ultra-
sound beam moves from the center of the transducer
toward its edgem]. It can be explained by that the
total number of the scatterers remaining within the
sound beam decreases with the increase of the lateral
strain and the beam location.

The overall object of this study lies in the theo-
retical analysis of this already-presented tissue axial
stretching model. After deriving a closed-form solu-
tion of the cross-correlation function between the pre-
and post-compression echoes, the decorrelation effect
that is dependent on the beam width, the beam posi-
tion and the lateral strain, can be explained and pre-
dicted theoretically.

1 Model

A 2-D scanning model with a 1-D array trans-

ducer is used in this study. The echo obtained by the

ultrasound beam located at = can be obtained as fol-

lows!131,

s(z,y)= k(z,y) * p(z,y)

= ﬂk(x',y')P(z —z',y = y)dz'dy’,

(1)

where & (z, y) represents the scattering response of

the discrete scatterers, p(z,y) is the PSF at the fo-

cal zone of the array transducer, ‘ * ’ denotes the

convolution operation, x and y are the lateral and ax-
ial coordinates, respectively.

The scattering response % (z, y) can be de-
scribed as follows! 2!,
"

k(z,y) = K, - Zd,- s Mz - zivy — 3:)s (2)
where K is the scattering constant coefficient, d; is
the diameter of the ith scatterer, n is the total num-
ber of scatterers within the tissue, and 8(z, y) de-
notes the 2-D Dirac delta function, (z;, y;) repre-
sents the space location of the ith scatterer. In this
work, the scatterer location in the tissue is taken as a
2-D (spatial) Poisson process, whose intensity repre-
sents the average density of scatterers!™ 1), and the
scatterer diameter is taken as a normal distribution.
In this model, all of the scatterers are considered to
be point reflectors and the multiple scattering is ig-
nored. Here the scattering response is simplified to be
proportional to the scatterer diameter (kocd ). More
generally, the scattering response is assumed to be
proportional to the scatterer diameter powered to
g(kcd?, 1<¢<3), where g is a medium depen-
dent constant!’®). However, the exact value of g is
not important in the analysis here. In addition, the
frequency dependence of the scattering response is not
considered for simplifying the problem.

In the focal area, the PSF may be modeled by
the following separable form!!%17-18],

P(I’y) =pl(I)Pa(y)s (3)
where p,(y) and p,(x) are the axial and lateral PSF
components, respectively. In this work, p,(y) is as-
sumed to be a zero mean Gaussian modulated cosine
pulse. The lateral PSF component of an unapodized,
rectangular transducer aperture (not considering grat-
ing lobes) is given by!1%17:18]

sin[ :| :
pu(z) = [;i "y SE<Y
w/2
0 otherwise,

(4)



432

Progress in Natural Science Vol.14 No.5 2004

where w denotes the transducer beam width.

2 Theory

In elastography, there are two major noise
sources affecting the performance of axial time delay
(i. e. axial displacement) estimation; the random
electronic noise of ultrasonic instruments and the
decorrelation noise. Both of them can reduce the peak
value of the cross-correlation function between the
pre- and post-compression echoes. The electronic
noise can be characterized by the sonographic SNR.
If a signal s{(y) and its delay version s;(y) are cor-
rupted by uncorrelated noise, the peak value of the
cross-correlation function is related to a correlation
SNR by[19]
R’l"z(yo)

GO Rﬁ-’z(y°)’

where R,l,,z( yo) denotes the peak value of the ener-

SNR (5)

gy-normalized cross-correlation function between
s1(y) and s,(y), and yq is the time delay of s,(y)
relative to s{(y). It can be seen from Eq. (5) that
the value of correlation SNR increases nonlinearly as
the peak value of the cross-correlation function in-

creases.

In our previous work, the pre- and post-com-
pression echoes can be decomposed into two uncorre-
lated parts, i.e. the signal part and the noise part. In
the tissue axial stretching model, the time delay is e-
qual to zero. Because the decorrelation noise intro-
duced by tissue lateral displacements reduces the peak
value of the cross-correlation function, as well as the
electronic noise, the decorrelation noise may be equiv-
alent to an electronic noise using the same relation as
Eq. (5).Thus the decorrelation can be characterized
by the peak value of the cross-correlation function
between the pre- and post-compression echoes

(R, (0)).

In Appendix A, the cross-correlation function is
theoretically deduced in detail, on the assumption
that a homogenous isotropic tissue is compressed by
an infinite compressor with a perfect slip boundary,
and stretched back in the axial direction. To obtain
the analytical expression of the cross-correlation func-
tion, the area of integral calculation in Eq. (1) is di-
vided into lots of nonoverlapping thin strips. The e-
cho from a strip can be regarded as the output of a
compound Poisson impulse process passing a linear fil-
ter. According to the properties of a linear filter, the

cross-correlation function between the pre- and post-
compression echoes from the strip becomes the cross-
correlation function between the pre- and post-com-
pression compound Poisson impulse process convolv-
ing the auto-correlation of the filter impulse response.
Summing the cross-correlation function between the
pre- and post-compression echoes from all strips, the
cross-correlation function is obtained as follows:
R’t"z(y )

[0 - 20204 - (1 + ez )day

‘/,[P%(lj - z1)dzxy - _[P?(lj - (1+ &)z )dxy

Rpa(y)
" R, (0)’

where R‘l-‘z (») represents the energy-normalized

(6)

cross-correlation function between the pre-compres-
sion echo (s;(y)) and the post-compression echo
(s2(»)) in tissue axial stretching model, [; and ¢,
represent the beam position and the lateral strain,
RPa( y) is the auto-correlation function of the axial

PSF component (p,(y)):
R, (y) = Jﬁa(y')h(y' +y)dy’. (D)

Thus the peak value of the cross-correlation
function is obtained as

R,,.,(0)
jpl(lj ~z)pi(lG — (1 + e)xq)dxy

\/‘(Pﬁ(lj - z1)dxy * JP%(ZJ' — (1 + e,)xy)dxy
(8)

In Egs. (6) and (8), the term p;(l; — z1) can be
attributed to a scatterer in lateral position x; to the pre-
compression echo; and the term p;(; = (1+¢€,)x;) can
be attributed to this scatterer to the post-compression
echo. Therefore, p,(}; — z1) p, (4 = (1 + &) z1)dzy
can be considered to be the contribution of this scatterer to
the amplitude of the cross-correlation function; and the

integral [ £1(4; = 20) (4~ (1+ &) 21)dey demotes
the overall contribution of all tissue scatterers. The term
J180 = 20dz - 80, - v ezddn e

notes the normalization by the energy of the pre- and post-
compression echoes.

In Egs. (6) and (8), the x; coordinate is rela-
tive to the transducer symmetric axis. To simplify
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Eq. (8), let £ =z — /;. It means that the coordi-
nate axis of x, moves to the center of the beam (beam
position). Using the even symmetry of p;(z) given
by Eq. (4), Eq. (8) is rewritten as

R’l' 52 (0)

LPI(JS)PI(I +ed; + ex)dx

) /'[p%(x)dx . Ip%(x + el + elx)d.r.
(9

There is an implicit term that influences the peak
value of the cross-correlation function given by Eq.
(9). It can be seen from Eq. (4) that the beam
width determines the lateral PSF component of the
transducer (p;(x)). Thus the beam width (w) is
one of the factors that influence the cross-correlation
function, as well as the beam position (/;) and the
lateral strain (e, ).

3 Simulation

Simulation experiment has been carried out to
test the theory presented in this work. The scatterer
spatial distribution in the tissue is taken as a 2-D
Poisson process, where the intensity A represents the
average density of tissue scatterers' 113} In this pa-
per, the average density of scatterers (1) is equal to
16/mm?, the length and width of the tissue are both
set to be 60 mm. The scatterer diameter is simulated
as a truncated normal distribution with an average of
0.05 mm, a standard deviation of 0.01 mm, a mini-
mum of 0.01 mm and a maximum of 0. 10 mm.

The array transducer is modeled by a center fre-
quency fo of 3.5 MHz, and a bandwidth defined by
the quality factor Q@ = 3.5. The quality factor Q is
defined as Q = fo/Af, where Af is the bandwidth at
half-power ( — 3 dB bandwidth) in the power spec-
trum of the lateral PSF component ( p,(y)).

The tissue is simulated as a homogenous isotropic
elastic medium. When an axial strain €, is applied,
the tissue undergoes a lateral strain ¢, = ve,, where v
is the Poisson’s ratio. The simulation of 2-D com-
pression and axial stretching can be simplified to com-
press merely in the lateral direction with the lateral
strain g,. The speed of sound in the medium is set at
a constant value of 1540 m/s and the sampling rate of
ultrasonic echoes is 40 MHz. According to the pre-
and post-compression positions of tissue scatterers,
the pre- and post-compression echoes are calculated

from Eq. (1). Here the ultrasonic random noise is
not taken into account. The echo windows are sepa-
rated to be nonoverlapping and 3 mm in window
length. The simulation results are achieved from the
average of 50 independent simulations.

Fig. 1 presents the cross-correlation function in
theory and simulation. The beam width, the beam
position and the lateral strain are 1.5 mm, 15mm and
0.004, respectively. It seems that the results in sim-
ulation are close to that in theory.

1.01
0.8
0.6
0.4
0.2

~--- Theory
— Simulation

Cross-correlation function expectation
(=]

~40 -30 -20 -10 O 10 20 30 40
Time or displacement (Expressed by sampling number)

Fig. 1. The cross-correlation function in theory and simulation.
Parameters: lateral strain ¢, = 0.004; beam position [, = 15 mm;
beam width w=1.5mm.

Fig. 2 shows the peak value of the cross-correla-
tion function both in simulation and direct calculation
of Eq. (9) using the numerical integral method, with
different beam positions and lateral strains. As the
beam position increases, the peak value of the cross-
correlation function decreases steadily, particularly
with a larger lateral strain.
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Fig. 2. The peak value of the cross-correlation function both in
theory and simulation with different beam positions and lateral
strains. Parameters: lateral strain ¢, is from 0.000 to 0.012 by an
increment of 0.004; beam position ; is from 0 to 30 mm by an in-
crement of 5 mm and bearn width w is 1.5 mm.
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Fig. 3 represents the peak value of the cross-cor-
relation function in simulation and theory with differ-
ent lateral positions and beam widths. The peak value
of the cross-correlation function with a narrower beam
drops much more rapidly with the increasing of the
beam position than that with a broader beam.

—
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Fig. 3. The peak value of the cross-correlation function both in
theory and simulation with different bearn widths and beam posi-
tions. Parameters; beam width w is 1.0, 1.5 and 2.0 mm; beam
position /; is from 0 to 30 mm by an increment of 5 mm and lateral
strain €, is 0.008.

4 Discussions and conclusion

Since the correlation SNR in the pre- and post-
compression echoes is directly related to the peak val-
ue of the cross-correlation function'’®, the latter
term can be used to characterize the decorrelation ef-
fect induced by lateral displacements in the tissue axi-
al stretching model. The theoretical closed-form solu-
tion and the simulation results indicate that the beam
width, the beam position and the lateral strain are
main impact parameters of decorrelation effect in-
duced by tissue lateral displacements, as can be seen
from Fig. 2 and Fig. 3.

When ultrasound beam is far enough from trans-
ducer symmetric axis, i.e. ;> w, Eq. (9) can be
rewritten as

JP!(I)PI(I + e5;)dx

‘/j-pf(z)d.r . Jp?(z + ezl,-)d.r.
(10)

R, (0) =

Because it satisfies J pf(z +ed; )z = J P%(I)

dx, Eq. (10) can be rewritten as

J-Pl(l')Pl(.t + edj)dz
[#i(a)dz

where the beam position and the lateral strain are u-
nited to one parameter, i.e. the lateral displacement.
As the lateral displacement increases, the peak value
of the cross-correlation function decreases. That is to
say, the decorrelation of pre- and post-compression e-
choes induced by lateral displacements increases. Be-

R, (0) = . an

cause the beam is relatively narrow in practice, it sat-
isfies Z,> w in most positions except those near the
transducer center. Thus Eq. (11) can be a more sim-
ple solution to express the decorrelation effect. This
result is similar to that given by Kallel et al. (10},
where the tissue scattering function was simply mod-
eled as a white Gaussian random process, and the lat-
eral displacements within the sound beam were as-
sumed to be constant.

When the lateral displacement is greater than the
beam width, namely,

(1+e,)(z,——‘2!)>z,-+%, (12)
or
w2+ e,)
l,-}"—ze—z‘—‘, (13)

where /; — % and [; + % are two boundaries of the

jth beam, the peak value of the cross-correlation
function turns to be zero:

R, (0) =0, (14)

S0 8;
which means that the pre- and post-compression e-
choes become decorrelated completely. Since the lat-
eral strain is small enough in elastography, it satisfies
EQZ—:Q%?; Then Eq. (13) becomes e,l;= w,
where €,J; is approximately equal to the lateral dis-
placement of tissues within the jth sound beam.
Sometimes, complete decorrelation may be encoun-
tered in elastography, especially when the lateral
strain is relatively large. For example, if the beam
width w=1.5 mm and the lateral strain ¢, =0.05,
the pre- and post-compression echoes obtained at the
beam I; 2 30 mm are completely decorrelated. In
these situations, all the scatterers in the sound beam
before compression move cut after compression. Thus
tissue axial displacements cannot be estimated
through the cross-correlation function between the
pre- and post-compression echoes, unless the correc-
tion of tissue lateral displacements has been consid-
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The newly-developed tissue axial stretching
model separates the decorrelation effect induced by
lateral displacements from other decorrelation
sources. The theoretical analysis in this paper helps to
understand more distinctly the decorrelation effect
and the dependence of some parameters, including the
beam width, the beam position and the lateral strain.
It is shown that the decorrelation noise induced by
tissue lateral displacements may be reduced by de-
creasing the lateral strain, using the central beams of
the transducer and applying relatively narrow ultra-
sound beams. However, these methods are quite lim-
ited and not practical in most practical situations. For
example, decreasing the lateral strain also decreases
the SNR in elastography since the axial strain also de-
creases in practice. Using only the central beams re-
duces the detective range available in elastography.

Therefore, a 2-D spatial comprehensive cross-
correlation method was proposed in our previous work
to reduce the decorrelation noise induced by tissue lat-
eral displacements!’*!. This method sums the cross-
correlation functions from several adjacent beams to
obtain a comprehensive cross-correlation function.
The decorrelation noise induced by tissue lateral dis-
placements decreases as the total number of adjacent
beams used increases.

The performance of the 2-D spatial comprehen-
sive cross-correlation method can be explained well by
the theoretical analysis in this study. The 2-D spatial
comprehensive cross-correlation method uses the sum
of several cross-correlation functions from adjacent
beams to estimate the axial displacements. The more
adjacent beams are used to calculate the cross-correla-
tion function, the more information about the ultra-
sonic scatterers is included within the echoes. It can
be regarded as using a single beam but with a wider
beam when using more adjacent beams in calculating
the cross-correlation function.

The tissue axial stretching model is a theoretical
model used to understand the decorrelation effect of
lateral displacements. However, in practice, to verify
the theoretical results in this paper it is quite difficult
to achieve the axial stretching of tissue (or phan-
tom). An approximate approach is to move the ho-
mogeneous tissue or transducer along the lateral direc-
tion of the transducer, but not to compress the tar-
get. This is because the theoretical analysis demon-

strates that the decorrelation effect in a certain trans-
ducer (with a constant beam width) is mainly decided
by the lateral displacements, as indicated previously
in the discussions. However, the theoretical analysis
here can help to understand more clearly the decorre-
lation effect induced by lateral displacements, the tis-
sue axial stretching model, and the effect of 2-D com-
prehensive cross-correlation function as well.

Appendix A Theoretical deduction of cross-
correlation function

1 Definition of the cross-correlation function

The cross-correlation function between pre- and
post-compression echoes in tissue axial stretching
model is defined as

R, ., (3) = <%_Ln(y')sz(y' + y)dy'>,

(A1)
where s;(y) and s,(y) are the pre-compression echo
and post-compression echo (after tissue axial stretch-
ing, the same below), respectively, T is the window
length, and {*) denotes the ensemble average opera-
tion.

2 Discretization of scattering echoes

The scattering echo of the jth beam is given by
s ( l j? y )

= [t )80 = 2)pu(y - ez,
(A2)

where [; denotes the lateral position of the beam.

To obtain the analytical expression of the cross-
correlation function, the area for integration in (A2)
is divided into many nonoverlapping thin strips, as
show in Fig.Al (a) and (b), before and after com-
pression, respectively. The pre-compression echo
from the strip located at x{ with width dz; can be
expressed as

i) 1, =[R2 - 2]

* pa(y — ¥y
=dkl(lj’y) l.tl *Pn(y),
(A3)
where
::1+d::l
dk1 (4, 9) 1 = I k(z's y)pu(ly — z')dx”.

1

(A4)
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Boundary conditions
Top / bottom: perfect slip boundary
Left/right: free boundary
sound beam
(@
Boundary conditions

Top / bottom: perfect slip boundary
Left /right: free boundary

|Scatterers

Jth sound beam

©)

Fig. Al. The diagrammatic sketch of tissue discretization before
compression (a), and after compression and axial stretching (b).

Assuming dx; is small enough, d&;(y) II1 can

be represented approximately as
z, +dzx
dki(L, y) 1, =~ pi(l; - x1)J. " k(2 y)de
1
(A5)

Substituting (2) into the latter term in (AS5)
and using the separability of 2-D Dirac delta function,
we obtain

z +dz;
f k(z',y)dz’

1

x, +dx
j l l[szdi.la(ll T X1 Y — yi,l)]d-r/

e

.z:l+d.z:l ) ,
Z U Kdma(-r T XY~ yi,l)dI }

i 1

= 2 Kd;16(y — y:,1), (A6)

z, (€l 2 +dz))
where K is a scattering constant coefficient, d; ; is
the diameter of the ith scatterer which is located at
(z;,1, ¥i,1) before compression.

Thus the integral in (AS) is expressed as the
sum of scattering function of individual scatterers
within the strip [z, ; + dx{). In this paper, the
scatterer position distribution in the tissue is simulat-
ed as a 2-D Poisson process. Therefore, the distribu-
tion of the scatterers within [ x,, z; + dx;) along y
direction can be regarded as a 1-D Poisson process
with an intensity of Adx;. Since the scatterer diame-
ters which determine the scattering strength have the
same normal distribution, the scattering function
(A6) can be regarded as a compound Poisson process
with an intensity of Adz; and a marked value of
Kd;. Then (AS) can be regarded as a compound
Poisson process with an intensity of A; = Adx; and a
marked value of p.(l; — x)*Kd;. Thus (A3) can be
regarded as the output of the compound Poisson im-
pulse process (AS) passing a linear filter with an im-
pulse response of p,(y).

After compression and tissue axial stretching,
the strip width becomes
dr, = (1 + €,)dx;y. (A7)

Because the tissue volume (distribution space of
scatterers) increases with e, after compression and
tissue axial stretching, the intensity of 2-D Poisson

A

€z

process of scatterers becomes

In a similar way, the post-compression scattering
echo from the strip located at z; can be represented as
d52(lj: _’V) ]1'2 = de(lj’y) |1:2 * Pa(y), (A8)

where

12+d12 , ,
dko (1, v) lzzf%pl(lj—.rz)J. E(z’, y)dz’,
2
(A9)
zytdzy , ,
f k(z ’y)dI = 2 Kdi.25(y - yi,z)-
&) %, € [xp 5y +dz))
(A10)

Similar to (A5), (A9) can be regarded as a
compound Poisson process with an intensity of 1, =

T+e dzz=Adz,= A, and a marked value of p_([; -

z)*Kd;. Thus (A8) can be regarded as the output
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of the compound Poisson (A9) passing a linear filter
with an impulse response of p,(y).

The pre- and post- compression echoes received
by the jth beam can be expressed as the sum of scat-
tering echo signals from all strips:

sl(lj,y) = stl(lj,y) III—)J- dsl(lj,y) III
Ty

as dry — 0, (A11)

s2ly3) = Ddsally3) 1oy~ | dsallu ) 1o,

Then the cross-correlation function (Al) be-
comes

R, (¥)

1’72

B <%L(L ds1(lj,57) Iz dzy

. J.I dsy(L, v + y) lzzdIZ) dyl>
2

IR

* J. dsZ(lj’ y’ + y) |Izdy,>d11d.‘£2

2

= [ | Rapa,(»)dzidas. (A13)
)Y I

Thus the calculation of the cross-correlation
function Rs‘.sz( y) turns to the calculation of the dis-

cretized cross-correlation function Rdsrdsz( y).
3 Deduction of cross-correlation function

There are two cases to be considered for the
computation of Rd‘rd‘z( ) in (Al13). In one case,

the pre- and post-compression strips contain the same
scatterers. In the other case, the pre- and post-com-
pression strips contain different scatterers. These two
cases are discussed as below:

(1) When z,=(1+¢,)x¢, the scatterers in the
strip located at x, after compression are the same as
that in the strip located at x; before compression;

sti.la(y - yi.l)

.t'._le[zl.zl+d.zl)

>

7 2€ Ly, 2y +dzy)

Kd; 26(y — 3:i,2)-(Al14)

Rdsldxz(y) =
0

The cross-correlation function between (A4) and
(A9) can be regarded as the cross-correlation function
between the same compound Poisson process with dif-
ferent marked label, which can be expressed as fol-
lows!15],

del.dkz(y) =p(l;—z) (1 — x3)
K2[Da16(y) + mAtl,
(A15)

where D, and m, are the mean-square and the expec-
tation of d;, respectively.

As a result, according to the property of the lin-
ear shift invariant system[15 1) the cross-correlation
function between echoes of (A3) and (AS8) is given
by

Ry, a4,(y) =Rar,a1,(3) * pa(y) * po (= 3)

=p(l; —z)pi(l; — z3) - K:

oo

{DdAda,-lJ‘_ 2.(y ) p. (3" + y)dy’

2

+ miAfUpa(y)dy] . (at6)

(2) When 2% (1+¢€,)x;, the scatterers in the
strip located at x, after compression is different from
that in the strip located at x; before compression.
Thus, the cross-correlation function between two
scattering functions (A4) and (A9) can be regarded
as the cross-correlation function between different
compound Poisson processes, which can be expressed

as follows!!*!

Ra,a,(3) = pu(l; — z) (45 — z2) K’m2a2.
(A17)

Then the cross-correlation function between e-
choes (A3) and (A8) is given by
Ry ,a5,(3) = Ra,ar,(y) * Pa(y) * Po(= )

=p(4; — 21)p(lj — x3)
2 2.2 g o PP
'K,mdMUpa(y )dy] . (A18)
Considering p,(y) is a zero mean function and
combining (A16) and (A18), the cross-correlation

function between echoes of (A3) and (A8) is given
by

0o

iy — z) (L — z2) + KfDd'\dxlf_mpa(y')Pa(y' + )y x = (1+e&)zy,

T #* (1 + EI)Il.
(A19)
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Using (A19), the cross-correlation function
(A13) can be expressed as

Ripo®) =[[204; - 202004, - (1 + e)z)da, ]

- KD - R, (3), (A20)

where R », () denotes the auto-correlation function of
Pa(y):

R, (y) = jPa(y')Pa(y' +y)dy . (A21)

Here the average and normalization are omitted in the
calculation of the auto-correlation function since
R, () is a deterministic energy signal.

Note that the cross-correlation function is nor-
malized by the window length, as shown in (A1). In
axial displacement estimation, the cross-correlation
function is typically normalized by energy:

[ 515205 + )y’
2 ’ ’ 2 ’ ’ > ’
'[Tsl(y )dy 'Izsz(y )dy
(A22)

Rs,s(y)=<
T

Then the cross-correlation function (A20) can be
expressed as an energy-normalized form:

Rsl,sz(y)
_[pl(lj - Il)Pl(lJ‘ - (1 + ez)xl)dxl

‘/J.Pi(lj - x1)dx; J.Pf(lj -1+ ¢)xy)dxy

an(y)
"R, (0)°

(A23)

In the procedure of theoretical derivation, we do
not suppose the shape of the axial PSF (P,(y)) be-
forehand, except its zero mean character. This zero-
mean assumption is reasonable for two reasons. First-
ly, the axial PSF is approximately zero in most cases.
Secondly, in elastography, a general preprocessing is
to center the pre- and post-compression echoes, i.e.
subtract their means respectively so as to make them
zero-mean echoes. In addition, the shape of the later-
al PSF (P;(x)) can be arbitrary here. In the main
text, the lateral PSF has been assumed to be a trun-
cated function only for simplification in simulation
and analysis.
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